anything is pretty certain about the acquisition of grammar at this point, it is that its central principles are not "learned" in any sense, because the experience necessary to induce them is simply not available to the child in any systematic fashion. On the other hand, however, I can play Pac-Man on that machine down at the arcade; there is no way I'll get to play Asteroids or Space Invaders for my quarter, short of altering its circuitry. People, though, speak literally thousands of tongues but presumably do not substantially differ in those aspects of brain structure and function relevant to language. Reality, then, seems to fall somewhere between these extremes; grammars are more like what Stabler calls "hybrid" systems. Insofar as a linguistic theory attributes grammatical universals ultimately to the genetic endowment of the organism, it is committed to at least certain aspects of the grammar being hardwired, not programmed, for how could a child come to know these principles, given the "poverty of the stimulus," unless they were intrinsic properties of the system? All that would remain open, on this view, would be how those properties which individuate grammars, the "software applications" permitted by the nature of the hardware, are instantiated. So it seems that the relation of higher-order cognitive theories such as grammars to their physical realizations is most like an Atari home video system; I can't word-process on it, but I can play Pac-Man, Asteroids, Space Invaders, and a host of other games just by putting in the proper cartridges. But perhaps this is enough of this computer mishmash. Today's computers may prove no more helpful as metaphors for circuitry. People, though, speak literally thousands of tongues.

The problem with this approach flows from an excessive affection for the computer metaphor. The crucial initial assumption is that linguistic theory is a deductive, axiomatic theory that works like a machine. In reality, the deductive model is a goal-achieve a...